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Abstract

The uncertainty in the variables and functions in computer simulations can be quantified by probability distributions and the correlations

between the variables. We augment the standard computer arithmetic operations and the interval arithmetic approach to include probability

distribution variable (PDV) as a basic data type. Probability distribution variable is a random variable that is usually characterized by

generalized probabilistic discretization. The correlations or dependencies between PDVs that arise in a computation are automatically

calculated and tracked. These correlations are used by the computer arithmetic rules to achieve the convergent approximation of the

probability distribution function of a PDV and to guarantee that the derived bounds include the true solution. In many calculations, the

calculated uncertainty bounds for PDVs are much tighter than they would have been had the dependencies been ignored. We describe the new

PDV Arithmetic and verify the effectiveness of the approach to account for the creation and propagation of uncertainties in a computer

program due to uncertainties in the initial data.
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1. Introduction

Computational uncertainties are unavoidable in numeri-

cal calculations. The generation and propagation of

uncertainties in the initial conditions, data and the constants

in mathematical model can have serious implications in the

reliability of the simulation and the decisions being made

based on the simulation. These inherent uncertainties cannot

be made arbitrarily small by additional computations, using

higher order formulas, or carrying more significant digits in

the arithmetic.

Even when one has a good grasp on the accuracy of the

initial data for a computation (such as measured data from a

well-calibrated experiment) often little is known a priori

about the accuracy of the results. The uncertainties in a

simulation can pollute the reliability of the results at every

stage of a computation. They may grow or even shrink

during the calculations. The magnitude of computational

uncertainty is of great concern to any thoughtful program-

mer, since no computation can be considered complete

unless one has some knowledge of its accuracy.

When the accuracy of the final result is crucial and the

computation is done in ordinary arithmetic, then it must be

tested by repeated tedious calculations or sensitivity

analysis. Approaches and representations of uncertainty

within computer simulations must be developed that are

efficient and provide sharp realistic bounds for the

propagation of uncertainty. Analytical techniques are ideal

in getting close forms of solutions while very few real-world

problems can be solved by these techniques. Numerical

methods become widely used. Monte Carlo [42] is a

powerful approach, but has some serious shortcomings [13],

such as difficulties in handling uncertainties that have

unknown dependency relationships or that are with

imprecise probabilities, that is, with distributions that are

not fully specified.

Non-Monte Carlo methods have been developed since

1960s [19]. In the early algorithms [8,19,21,35], indepen-

dent relationships were assumed among all the random

variables and no dependency issues were taken into account

throughout a computation. Later copula based approach,

which is based on the theory of copulas [36], was studied.

This approach is focused on finding the bounds for joint

distributions from their given marginal distributions, when

the dependency relationships among the random variables

are unknown. Some early work in this approach was done by

Frank et al. [16] for bounding sums of random variables.

Then it was extended by Williamson in his PhD dissertation

[45] and Downs [46] to bounding the results of adding,
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subtracting, multiplying and dividing random variables.

More recent work of Cossette et al. [9] provided results on

multivariate copula models. Ferson’s RAMAS Risk Calc

[14] as part of a commercial software package is an

implementation of the copula approach.

Another major non-Monte Carlo based approach is

interval approach. It relies on probabilistic discretizations

of random variables. Berleant et al.’s DEnv algorithm [2–5]

is a recent representative of this approach. DEnv makes use

of linear programming [22] to achieve dependency bounds

for random variables that may be independent, have

unknown dependency, or have a correlation value as limited

information about the dependency. Statool [43] implement-

ing DEnv is a tool for operations on distribution functions

and p-boxes [15].

Regen et al. [39] show that DEnv and the copula-based

Probabilistic Arithmetic [45,46] are equivalent in important

ways. Although both of these algorithms can draw sharp

bounds for joint distributions from given marginal distri-

butions with unknown dependency, neither approach tracks

the dependencies that develop between the random

variables throughout a computation. Consequently in

multi-step calculations, these approaches assume that the

new dependency relationships of the marginal distributions

obtained from the previous step of calculation are either

independent or unknown. In computer programs where

many of the random variables have strong deterministic

function relationships, this assumption can quickly cause

the bounding intervals to become useless over estimates of

the sharp bounds. Berleant et al. [4,6] describes how DEnv

deals with correlation between input distributions to obtain

tighter bounds using correlation coefficient as a known

interval. However, these correlations need to be automati-

cally updated in the next step of calculation and the

mathematical theory validated for giving sharp bounds must

still be developed.

Therefore, new approach that can perform dependency

tracking has to be developed. Using generalized proba-

bilistic discretizations of probability distribution variables

(PDVs), which are equivalent to random variables, we have

developed a new computer arithmetic. Our PDV Arithmetic

extends an interval approach with dependency tracking [18]

and is closely related to the extensive advances in interval

arithmetic [34].

PDV Arithmetic is distinguished from the other existing

approaches in a sense that it tracks the dependencies that

develop throughout a computation and uses this information

to obtain tight bounds that are guaranteed to converge to the

sharp bounds as the input generalized probabilistic

discretizations are refined. Thus, it can account for the

creation and propagation of uncertainties in a computer

program due to uncertainties in the data and that

dynamically arise in the computation. PDV Arithmetic

also provides convergent approximations of the exact

generalized probabilistic discretizations of PDVs based on

the input random variables. The exact bounds for

distributions of PDVs can be derived directly from the

exact generalized probabilistic discretizations with respect

to the input random variables.

PDV Arithmetic can also be applied in interval

computations by ignoring the probability part in the

arithmetic. With the dependency tracking feature, it gives

sharp bounds to the results of any interval functions that are

in form of algebraic expressions.

The current version of PDV Arithmetic assumes that all

PDV inputs are independent. Although this assumption

requires some additional work to define any known

correlations between the input random variables to mini-

mized the number of the inputs such that the inputs are

independent, it greatly simplifies the analysis and allows us

to lay a foundation for later versions of PDV Arithmetic that

will allow for general dependency relationships among

input random variables.

We implement PDV Arithmetic by adding a new data

type, called probability distribution variable (PDV), to an

existing computer language. This follows the approaches of

several interval arithmetic implementations [23,25] where

the programmer can embed interval arithmetic in existing

complex codes. Also, many of the technical details can be

easily hidden from the program with the help of a

preprocessing program that converts the extended language

into a standard portable version of the program.

The structure of this paper is as follows. We first introduce

some concepts needed to define the PDV arithmetic rules.

These include the definition of PDV, the independence and

correlation among PDVs, and the generalized probabilistic

discretizations of PDVs. We then describe and analyze the

underlying algorithm that defines PDV Arithmetic. Next we

give a brief description of how we implement PDV

Arithmetic in Fortran 77 by using a Perl preprocessor and

subroutine library of PDV arithmetic operations. We use two

sets of numerical examples to illustrate how PDV Arithmetic

automatically characterizes the uncertainties in calculating

the eigenvalues of a matrix of PDVs and the challenge

problem set proposed by Oberkampf et al. [38].

2. Basic concepts and results

In this section, we introduce some concepts and results

without giving proofs. Mathematical details can be found in

Ref. [31].

Definition 2.1. (Probability distribution variable)

PDV is a random variable [12]. The range interval of a PDV

is the smallest closed interval that contains the support [12]

of the PDV.

Definition 2.2. (Independence)

A number of PDVs x1;…; xn are independent if they are

independent random variables [12], i.e. for any Borel sets
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A1;…;An on the real line,

Prob{xi1
[ Ai1

;…; xik
[ Aik

} ¼
Yk

j¼1

Prob{xij
[ Aij

};

where 1 # k # n; 1 # i1 , · · · , ik # n:

Definition 2.3. (Pre-image PDV Set)

If PDV x is a function f of PDVs e1; e2;…; el where f is not

constant at any ei when the others are fixed, 1 # i # l; then

set {e1; e2;…; el} is called a pre-image PDV set of x:

Definition 2.4. (Correlation)

Two PDVs are dependent if they have common pre-image

PDV set. Two PDVs are partially dependent if their pre-

image PDV sets have nonempty intersection. Both depen-

dent and partially dependent are called correlated.

Note. Every two PDVs in a computer program must be

dependent, partially dependent, or independent if the input

PDVs are independent.

Definition 2.5. (Generalized probabilistic discretization)

A generalized probabilistic discretization (GPD) of PDV x

is defined by

GPDðxÞ ¼ ðIr; prÞj1 # r # l;
Xl

r¼1

pr ¼ 1;

(

Ir is an interval; the support of x #
[l

r¼1

Ir

)
;

where Ir is called a bin and pr is the associated probability

with which x assumes values in Ir: The width of GPDðxÞ is

defined by

kGPDðxÞk ¼ sup
1#r#l

{kIrk}:

In particular, if intervals Ir’s are mutually disjoint, then the

above GPDðxÞ is called a probabilistic discretization of x;

denoted by PD(x).

Examples of probabilistic discretization and generalized

probabilistic discretization are illustrated in Figs.1 and 2.

Notice that probabilistic discretization is graphed as

histogram.

Definition 2.6. (Refinement of generalized probabilistic

discretization)

Assume that GPD1ðxÞ and GPD2(x) are two generalized

probabilistic discretizations of PDV x: GPD2ðxÞ is a

refinement of GPD1ðxÞ if GPD2ðxÞ has the following

representation

GPD2ðxÞ ¼

(
ðIr; prÞ

����r ¼ 1;…; lðI;pÞ;
[lðI;pÞ
r¼1

Ir ¼ I;
XlðI;pÞ
r¼1

pr ¼ p;

;ðI; pÞ [ GPD1ðxÞ

)
;

where Ir are intervals.

Note. The refinements of intervals I allow overlaps among

the interval pieces Ir:

Definition 2.7. (Inclusion of generalized probabilistic

discretization)

Assume that GPD1ðxÞ and GPD2ðxÞ are two generalized

probabilistic discretizations of PDV x: GPD2ðxÞ is included

in GPD1ðxÞ; denoted by GPD2ðxÞ # GPD1ðxÞ; if there exists

a one-to-one correspondence p : ðI2; p2Þ [ GPD2ðxÞ 7!

ðI1; p1Þ [ GPD1ðxÞ such that I2 # I1; and p2 ¼ p1:

Note. The inclusion of generalized probabilistic discretiza-

tion can be viewed as a special refinement of generalized

probabilistic discretization by considering that I1 is

refined into

I1 ¼ I2

[
ðI1\I2Þ

and I1\I2 is assigned with zero probability.

Definition 2.8. (Convergence of generalized probabilistic

discretization)

Assume that GPD(x) and GPDr( . x . ) (r [ L;L is an

index set) are generalized probabilistic discretizations of

PDV x: Assume that r0 is a limit point of L. GPDr(x) is

convergent to GPD(x) as r tends to r0; denoted by

Fig. 1. Illustrative figure of the proababilistic discretization (PD) of a PDV

with four bins and probability distribution {0.2, 0.3, 0.4, 0.1} in the range

interval.

Fig. 2. Illustrative figure of the generalized probabilistic discretization

(GPD) of a PDV with four bins and probability distribution {0.2, 0.3, 0.4,

0.1} in the range interval.
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GPDr(x) ! GPD(x) as r ! r0; or limr!r0
GPDrðxÞ ¼

GPDðxÞ; if there exists a one-to-one correspondence pr :

ðIr; prÞ [ GPDrðxÞ 7! ðI; pÞ [ GPDðxÞ for each r [ L; such

that ar ! a; br ! b; and pr ¼ p as r ! r0; where a; b and

ar; br are the left and right endpoints of I and Ir;

respectively.

Theorem 2.1. (Relationship between a PDV and its

generalized probabilistic discretizations)

Each generalized probabilistic discretization of PDV x

corresponds to a class of PDVs that have the same

generalized probabilistic discretization and converge point-

wise to x everywhere when the width of the generalized

probabilistic discretization tends to zero.

Proof. See Ref. [31]. A

Note. Generalized probabilistic discretization of PDV

corresponds to the basic probability assignment in Evidence

Theory [27]. Theorem 2.1 provides a way to group PDVs by

their generalized probabilistic discretization. Each general-

ized probabilistic discretization corresponds to a family of

PDVs, and each PDV in the family is a representative of the

family.

Consider a PDV x where

GPDðxÞ ¼ {ðIr; prÞj1 # r # l}:

Assume that the left endpoint and right endpoint of Ir are

ar and br; respectively.

Define two probability distribution functions MGPDðxÞ and

mGPDðxÞ as the step functions:

MGPDðxÞðzÞ ¼
X

rjar#z

pr;

mGPDðxÞðzÞ ¼
X

rjbr#z

pr; z [ R:

We denote the class of PDVs determined by GPDðxÞ as

CGPDðxÞ:

Theorem 2.2. Let Fx be the distribution function of PDV x

and Fy be the distribution function of PDV y [ CGPDðxÞ:

Then

mGPDðxÞðzÞ # FyðzÞ # MGPDðxÞðzÞ;

;z [ R; ;y [ CGPDðxÞ:

Furthermore,

FxðzÞ ¼ lim
kGPDðxÞk!0

MGPDðxÞðzÞ ¼ lim
kGPDðxÞk!0

mGPDðxÞðzÞ;

z [ R:

Proof. See Ref. [31]. A

The graphs of MGPDðxÞ and mGPDðxÞ are disconnected since

MGPDðxÞ and mGPDðxÞ are step functions. If we connect the

disconnecting points with vertical lines, the graphs become

connected and we call them the connected graphs of MGPDðxÞ

and mGPDðxÞ; respectively. Notice that these two graphs have

the same starting and ending points.

Theorem 2.2 supports the following definition.

Definition 2.9. (Probability distribution bounds, probability

distribution box, refined probability distribution box)

MGPDðxÞ and mGPDðxÞ are called the upper and lower

probability distribution bounds (upper and lower p-bounds)

of x with respect to GPDðxÞ; respectively. The area enclosed

by the connected graphs of MGPDðxÞ and mGPDðxÞ is called the

probability distribution box (p-box) of x with respect to

GPDðxÞ: If GPD2ðxÞ is a refined generalized probabilistic

discretization of x with respect to GPD1ðxÞ; the p-box

determined by GPD2ðxÞ is called a refined probability

distribution box (refined p-box) of x with respect to GPD1ðxÞ:

Note. The above defined probability distribution bounds are

related to the belief and plausibility measures in Evidence

Theory (Dempster and Shafer [10,11,41]). The term ‘p-box’

was first used by Ferson [15].

Definition 2.10. (Interval arithmetic)

Interval arithmetic is a set of rules for set operations defined

on intervals and is based on algebraic expressions, called

base functions. Each variable in base function expression is

replaced with the interval to which this variable belongs.

These replacement intervals are considered independent

regardless whether some of them replace the same variable.

Equivalently, the derived set from the arithmetic is the

image of a function called derived function, which is

derived from the base function by replacing each appear-

ance of a variable in the algebraic expression of the base

function with a new different variable symbol, over the

Cartesian product of the intervals that these new variables

belong to.

Theorem 2.3. (Connectedness, convergence and continuity

of interval arithmetic)

If f is a continuous base function over the Cartesian product

of intervals I1;…; In; then the derived set from using the

interval arithmetic, denoted by f ½I1;…; In	; is an interval.

Furthermore, if f is continuous over the Cartesian product

of the closures of I1;…; In; then the width of f ½I1;…; In	 tends

to zero as the widths of I1;…; In tend to zero. If f is

continuous over the Cartesian product of intervals I1;…; In

as well as the Cartesian product of intervals ~I1;…; ~In, then

f ½~I1;…; ~In	! f ½I1;…; In	 as ~Ii ! Ii ði ¼ 1;…; nÞ, provided

one of the following two conditions is satisfied:

(1) I1;…; In are finite intervals.

(2) ~I # I1;…; ~In # In.
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Proof. See Ref. [31]. A

Remark. The interval arithmetic in Definition 2.10 is also

called standard interval arithmetic by Williamson [45] and

idealized interval arithmetic by Kearfott [24]. The ‘derived

function’ concept here is consistent with the term ‘interval

extension’ in Moore [33,34]. The notation f ½I1;…; In	 that

we use here is the image of the interval extension over

intervals I1;…; In: It is true that f ðI1;…; InÞ # f ½I1;…; In	

[33,34]. For instance, let f ðxÞ ¼ x 2 x; and x [ I ¼ ½0; 1	:

Then f ðIÞ ¼ {0}; while f ½I	 ¼ ½0; 1	2 ½0; 1	 ¼ ½21; 1	:

A form of interval arithmetic first appeared at least as early

as in 1924 [7] and 1931 [47], then in 1958 [44]. Modern

development of interval arithmetic began with Moore’s

dissertation [32] in 1962. Since then there have been

thousands of publications in the field of interval analysis and

its applications, plus an increasing amount of software

support for interval computations. Major advances have

been made by Moore [33,34], Nickel [37], Alefeld and

Herzberger [1], Kearfott [24,25] and Kreinovich [26],

Kreinovich et al. [29], and Jaulin et al. [20]. A web site

for interval computations is http://www.cs.utep.edu/inter-

val-comp/.

3. Algorithm of PDV Arithmetic

PDV Arithmetic is a set of rules to calculate generalized

probabilistic discretizations of PDVs. A PDV can be a

discrete, continuous, or mixed random variable. We store a

PDV in computer by its generalized probabilistic discretiza-

tion. In PDV Arithmetic, the calculations among PDVs are

actually the calculations among the generalized probabil-

istic discretizations of PDVs. Theorem 2.1 tells us that if the

width of the generalized probabilistic discretization of each

PDV is small, we may obtain precise results for the PDVs.

Therefore, the task of PDV Arithmetic is to find generalized

probabilistic discretization for each PDV whose width is

small when the widths of the generalized probabilistic

discretizations of the input PDVs are small.

We classify two types of PDVs in PDV Arithmetic:

primitive PDV and derived PDV. Primitive PDV is

explicitly defined as a PDV input by the user. It can also

be called input PDV. Derived PDV is defined as a function

of primitive PDV(s) via algebraic calculations. Derived

PDV includes intermediate PDV, which is not declared in

the source program as PDV but arises in the intermediate

stages of a computation.

Primitive PDV is merely a PDV input. Although it is

defined via a variable name, it is independent of the variable

name. On the contrary, the variable name via which a

primitive PDV is defined is the identity function of the

primitive PDV and is a derived PDV. From this point of

view, all PDV names in a program are functions of the PDV

inputs and hence are derived PDVs.

Primitive PDVs control the relationships among derived

PDVs generated during the execution of the program. Thus,

derived PDVs are like puppets on a stage connected through

interrelated strings governed by primitive PDVs.

There are cases when primitive PDVs are correlated. If

the correlations of the primitive PDVs can be expressed as

function relations or can be approximated by algebraic

expressions from statistical regressions [17], then some

primitive PDVs that are functions of other primitive PDVs

can be converted to derived PDVs. This approach can

reduce the number of correlated primitive PDVs to the

maximal extend and improve the efficiency of the program.

In the current version of PDV Arithmetic, we require the

following condition.

Condition 3.1. All primitive PDVs are independent.

Condition 3.1 provides mathematical convenience to

develop PDV Arithmetic. Although this assumption

excludes problems with correlated input random variables

that cannot be reduced to independent primitive PDVs,

using the above approach there are still many problems

where the condition is satisfied.

To satisfy Condition 3.1, PDV inputs regardless whether

they are defined by the same variable names or have

identical generalized probabilistic discretizations, are con-

sidered different primitive PDVs. This guarantees that every

derived PDV has a non-ambiguous pre-image PDV set. That

is, if a PDV is redefined using the same variable name, then

it is treated as a new, and different, primitive PDV. Thus,

redundant definitions of the same PDV in a computer

program should be avoided, unless the programmer means

to define a different primitive PDV. The following example

(written in pseudo codes) illustrates how this rule works.

PDV x; y; z;w

GPDðxÞ ¼ {ð½1; 3	; 0:7Þ; ð½2; 4	; 0:3Þ}

y ¼ x3

GPDðxÞ ¼ {ð½1; 3	; 0:7Þ; ð½2; 4	; 0:3Þ}

z ¼ x3

w ¼ y 2 z

x is used twice as a variable symbol to input PDV data.

Although y; z and w are derived from the same variable

symbol x; their pre-image primitive PDV sets are different. y

is derived from the first PDV input (first primitive PDV)

only, z is derived from the second PDV input (second

primitive PDV) only, and w is derived from the first and

second PDV inputs (first and second primitive PDVs).

Notice that both y and z have identical but independent

generalized probabilistic discretizations. Hence there is no

such a result that w ¼ y 2 z is equal to 0 with probability 1.
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The above rule is summarized in the following condition

that is also required in PDV Arithmetic.

Condition 3.2. Each PDV input defines a new primitive

PDVs.

When calculation between two PDVs occur, it is passed

to the bins and the probabilities in the generalized

probabilistic discretizations. When the two PDVs are

independent, any arbitrary pair of bins from the two

generalized probabilistic discretizations can be used to

perform the calculation. When dependency or partial

dependency exists in the two PDVs, only some pairs of

bins from the two generalized probabilistic discretizations

can be used to perform the calculation. These pairs are

determined by the common primitive PDVs in the two pre-

image primitive PDV sets. After the possible pair of bins are

determined, the interval arithmetic in Definition 2.10 is

utilized to obtain a generalized probabilistic discretization.

In PDV Arithmetic, a bin of a derived PDV is

distinguished from other bins by a set of indices of the

bins (from which the bin is determined) of the primitive

PDVs in the pre-image primitive PDV set of this PDV. Any

non-input PDVs are derived from functions that are

algebraic expressions of other PDVs and these functions

can be decomposed into a sequence of unitary or binary

operations on the involved PDVs. The cases in which a PDV

z is derived from a PDV x only (unitary operation), or from

PDVs x and y (binary operation), are analyzed as follows.

(1) z is a function of x only.

Suppose that x is a function of primitive PDVs e1;…; er:

Each bin of x with indices ðie1
;…; ier

Þ and with the

corresponding probability pxðie1
;…; ier

Þ determines a bin of

z with indices ðie1
;…; ier

Þ and with the corresponding

probability

pzðie1
;…; ier

Þ ¼ pxðie1
;…; ier

Þ ¼
Yr

j¼1

pej
ðiej

Þ:

(2) z is derived from x and y:

(a) x and y are independent. Suppose that x is a function of

primitive PDVs e1;…; er; and y is a function of primitive

PDVs erþ1;…; erþs:By independence, any arbitrary pair

of bins of x and y can form a bin of z via the interval

arithmetic and via multiplying the corresponding

probabilities. That is, the bin of x with indices

ðie1
;…; ier

Þ and with the corresponding probability

pxðie1
;…; ier

Þ and the bin of y with index ðierþ1
;…; ierþs

Þ

and with the corresponding probability pyðierþ1
;…; ierþs

Þ

form the bin of z with indices ðie1
;…; ierþs

Þ and with the

corresponding probability pzðie1
;…; ierþs

Þ ¼

pxðie1
;…; ier

Þ ·pyðierþ1
;…; ierþs

Þ ¼
Qrþs

j¼1 pej
ðiej

Þ:

(b) x and y are dependent. Suppose that x and y are functions

of primitive PDVs e1;…; er:Only the bin of x and the bin

of y with common indices are eligible to form a bin of z;

and the corresponding probabilities must be equal. That

is, the bin of x and the bin of y with common indices

ðie1
;…; ier

Þ form the bin of z with indices ðie1
;…; ier

Þ and

with the corresponding probability pzðie1
;…; ier

Þ ¼

pxðie1
;…; ier

Þ ¼ pyðie1
;…; ier

Þ ¼
Qr

j¼1 pej
ðiej

Þ:

(c) x and y are partially dependent. Suppose that x is a

function of primitive PDVs e1;…; er; erþ1;…; erþs;

and y is a function of primitive PDVs

erþ1;…; erþs; erþsþ1;…; erþsþt; where r $ 0; s . 0; t $

0: Only the bin of x and the bin of y that have common

values on ierþ1
;…; ierþs

in the two index sets ðie1
;…; ierþs

Þ

and ðierþ1
;…; ierþsþt

Þ can be used to form a bin of z: That

is, the bin of x with indices ðie1
;…; ierþs

Þ and with the

corresponding probability pxðie1
;…; ierþs

Þ and the bin of

y with indices ðierþ1
;…; ierþsþt

Þ and with the correspond-

ing probability pyðierþ1
;…; ierþsþt

Þ form the bin of z with

indices ðie1
;…; ierþsþt

Þ and the corresponding probability

pzðie1
;…; ierþsþt

Þ ¼
Qrþsþt

j¼1 pej
ðiej

Þ:

Note. Although the decomposition of function f into a

sequence of unitary or binary operations is not unique,

different decompositions of f applied on I1;…; In using the

interval arithmetic end up with the same derived interval

f ½I1;…; In	 (see Ref. [31]).

The algorithm described as above defines an arithmetic

called Primitive PDV Arithmetic that is based on primitive

PDVs.

Definition 3.1. (Primitive PDV Arithmetic)

Let {e1;…; en} be the pre-image primitive PDV set of PDV

x; and x ¼ f ðe1;…; enÞ where f is a continuous algebraic

expression on the Cartesian products of the bins of

e1;…; en: f can be decomposed into a sequence of unitary

or binary operations. Primitive PDV Arithmetic is a set of

rules, which are described in the above cases 1, 2(a), 2(b),

and 2(c) for any decomposition of f ; to determine a

generalized probabilistic discretization of x: Although the

decomposition of f into a series of unitary and binary

operations is not unique, the generalized probabilistic

discretization of x obtained in this way is always unique

and can be formulated as

GPDðxÞ ¼

(
ðI; pÞ

����I ¼ f ½I1;…; In	; p ¼
Yn

i¼1

pi;

;ðIi; piÞ [ GPDðeiÞ; i ¼ 1;…; n

)

where notation f ½I1;…; In	 is defined in Theorem 2.3 and

has been proved to be an interval.

W. Li, J. Mac Hyman / Reliability Engineering and System Safety 85 (2004) 191–209196



The convergence of GPDðxÞ follows from Theorems 2.1

and 2.3. It can be summarized as

Theorem 3.3. (Convergence of primitive PDV Arithmetic)

For all PDVs that are derived from primitive PDVs via

algebraic expressions that are continuous on the Car-

tesian products of the closures of the bins of primitive PDVs,

the generalized probabilistic discretizations calculated from

Primitive PDV Arithmetic converge to the PDVs as

the widths of the generalized probabilistic discretizations

of all primitive PDVs tend to zero.

Definition 3.2. (Exact generalized probabilistic discretiza-

tion)

Let {e1;…; en} be the pre-image primitive PDV set of PDV

x; and x ¼ f ðe1;…; enÞ where f is a continuous algebraic

expression on the Cartesian products of the bins of e1;…; en:

The exact generalized probabilistic discretization of x with

respect to GPDðe1Þ;…;GPDðenÞ; denoted by EGPDðxÞ; is

defined by

EGPDðxÞ ¼

(
ðI; pÞ

����I ¼ f ðI1;…; InÞ;

p ¼
Yn

i¼1

pi; ;ðIi; piÞ [ GPDðeiÞ; i ¼ 1;…; n

)

where f ðI1;…; InÞ is the function image of f over I1 £ · · · £ In:

Theorem 3.4. (Continuity of exact generalized probabilistic

discretization)

Let e1;…; en be independent PDVs with generalized

probabilistic discretizations GPDðeiÞ and GPDkðeiÞ where

i ¼ 1;…; n and k ¼ 1; 2;…: Let x ¼ f ðe1;…; enÞ where f is a

continuous algebraic expression on the Cartesian products

of the bins of e1;…; en: Suppose that GPDkðeiÞ! GPDðeiÞ

as k !1 for all i. Then

lim
k!1

EGPDkðxÞ ¼ EGPDðxÞ

provided one of the following two conditions is satisfied:

(1) The bins in GPD(ei) are finite intervals for all i.

(2) GPDkðeiÞ # GPDðeiÞ for all k and i.

Proof. See Ref. [31]. A

Definition 3.3. (Exact probability distribution bounds and

exact probability distribution box)

The p-bounds and p-box determined by the exact general-

ized probabilistic discretization of a PDV with respect to

the generalized probabilistic discretizations of the variables

in the pre-image primitive PDV set of the PDV are called

the exact p-bounds and exact p-box of the PDV with respect

to the generalized probabilistic discretizations of the

variables in the pre-image primitive PDV set of the PDV,

respectively.

We extend Primitive PDV Arithmetic as Refined

Primitive PDV Arithmetic that can calculate the exact

generalized probabilistic discretization of a PDV with

respect to the generalized probabilistic discretizations of

the primitive PDVs in the pre-image primitive PDV set.

Definition 3.4. (Refined primitive PDV Arithmetic)

Let {e1;…; en} be the pre-image primitive PDV set of PDV

x; and x ¼ f ðe1;…; enÞ where f is a continuous algebraic

expression on the Cartesian products of the bins of e1;…; en:

Refined Primitive PDV Arithmetic is a set of rules to

determine a special generalized probabilistic discretization

of x with respect to GPDðe1Þ;…;GPDðenÞ by performing the

following steps:

† For 1 # i # n; refine each bin of ei to obtain a refined

generalized probabilistic discretization of ei; denoted by

RGPDðeiÞ; which has the representation

RGPDðeiÞ ¼ ðIiki
; piki

Þ

����ki ¼ 1;…; li;
[li
ki¼1

Iiki
¼ Ii;

8<
:
Xli
ki¼1

piki
¼ pi; ;ðIi; piÞ [ GPDðeiÞ

9=
;:

† Apply Primitive PDV Arithmetic on RGPDðeiÞ; 1 # i #

n; to obtain a refined generalized probabilistic discretiza-

tion of x; which is given by

RGPDðxÞ ¼ f ½I1k1
;…; Inkn

	;
Yn

i¼1

piki

 !����ki ¼ 1;…; li;

(

i ¼ 1;…; n;
[li
ki¼1

Iiki
¼ Ii;

Xli
ki¼1

piki
¼ pi;

;ðIi; piÞ [ GPDðeiÞg:

† Combine all the bins in RGPDðxÞ that are obtained from

the same bins in GPDðeiÞ; 1 # i # n; and obtain a

derived set that is an interval when f is continuous

from the proof of the following Theorem 3.5. Make this

interval a bin in a new generalized probabilistic

discretization, and calculate the probability associated

with this bin by multiplying the probabilities on the

corresponding bins in GPDðeiÞ; 1 # i # n:

† The new generalized probabilistic discretization

obtained from above is a special generalized

probabilistic discretization of x with respect to

GPDðe1Þ;…;GPDðenÞ; denoted by SGPDðxÞ; and has the
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representation

SGPDðxÞ ¼
[

1#ki#li

1#i#n

f ½I1k1
;…; Inkn

	;
Yn

i¼1

pi

0
BBBBBBB@

1
CCCCCCCA
���� [

li

ki¼1

Iiki
¼ Ii;

8>>>>>><
>>>>>>:

Xli
ki¼1

piki
¼ pi; ;ðIi;piÞ[GPDðeiÞ; i¼ 1;…;n

9=
;:

Theorem 3.5. (Significance and convergence of refined

primitive PDV Arithmetic)

Let {e1;…; en} be the pre-image primitive PDV set of PDV

x; and x ¼ f ðe1;…; enÞ where f is a continuous algebraic

expression on the Cartesian products of the bins of e1;…; en:

Then SGPDðxÞ computed via Refined Primitive PDV

Arithmetic is a generalized probabilistic discretization of

x; and

EGPDðxÞ # SGPDðxÞ: ð3:1Þ

Furthermore,

(1) if each bin in GPDðeiÞ is a finite interval for

1 # i # n; and f is continuous on the Cartesian products

of the closures of the bins in GPDðe1Þ;…;GPDðenÞ, then

lim
kRGPDðeiÞk!0

1#i#n

SGPDðxÞ ¼ EGPDðxÞ; ð3:2Þ

(2) if there are sequences GPDkðeiÞ ðk ¼ 1; 2;…Þ such that

each bin in GPDkðeiÞ is a finite interval, f is continuous on

the Cartesian products of the closures of the bins in

GPDkðe1Þ;…;GPDkðenÞ, GPDkðeiÞ # GPDðeiÞ and limk!1

GPDkðeiÞ ¼ GPDðeiÞ for each i; 1 # 1 # n; then

lim
k!1

lim
kRGPDkðeiÞk!0

1#i#n

SGPDkðxÞ ¼ lim
k!1

EGPDkðxÞ ¼ EGPDðxÞ:

ð3:3Þ

Proof. See Ref. [31]. A

Remark. Inclusion relation (3.1) implies that the bounds

given by SGPDðxÞ enclose all the possible distributions of x:

When all input bins are finite intervals, Relation (3.2)

guarantees SGPDðxÞ converges to EGPDðxÞ that determines

exactly the set of all the possible distributions of x; as the

input bins are refined. When there is an input bin with

infinite length or with singularity at one or two of its

endpoints, Relation (3.3) guarantees that proper finite

truncations on the infinite-length input bins or to exclude

the singularities can be performed to achieve convergent

approximations.

Combining Theorems 3.4 and 3.5 we have

Corollary 3.6. (Stability of refined primitive PDV Arith-

metic)

In Refined Primitive PDV Arithmetic, small perturbations of

the input bins do not lead to big changes in the result

provided that all input bins are finite intervals.

Finally, we have

Definition 3.5. (PDV Arithmetic)

Primitive PDV Arithmetic and Refined Primitive PDV

Arithmetic together are called PDV Arithmetic.

4. Implementation of PDV Arithmetic

PDV arithmetic is implemented in computer languages

by including PDV as a basic data type. The implementation

includes three aspects: (1) PDV recording; (2) preprocessor;

and (3) subroutine library.

4.1. PDV Recording

As a basic data type, all PDV names in a program must

be declared in the declarative statement with the same

priority as other data types such as integer and real. These

PDVs are called declared PDVs. There is another kind of

PDV that appears when intermediate temporary variables

are needed in the event that an algebraic expression is

decomposed into a sequence of unitary and binary

operations. We call them intermediate PDVs. Declared

PDVs and intermediate PDVs are derived PDVs, i.e. they

are functions of primitive PDVs.

PDVs are recorded by natural numbers in the order that

they appear in the program. There is a one-to-one

correspondence between PDVs and a finite sequence of

natural integers starting from 1. We call these integers the

labels or indices of the corresponding PDVs. For example, if

we define PDVs x; y; and z in a program and no other PDVs

are defined before them, then x; y; and z are recorded as PDV

1, 2, and 3 in the PDV list. Similarly, all primitive PDVs are

identified by their indices that are the orders in which they

are input by the user. For example, primitive PDV 2 is the

second PDV input.

The generalized probabilistic discretization of a PDV is

characterized by its bins and the probabilities associated

to the bins. Each bin has the left and right endpoints.

Thus, in principle we can use three arrays (left endpoint

array, right endpoint array and probability array) to store

all the information about the generalized probabilistic

discretization of a PDV. Similarly, left endpoint array,

right endpoint array and probability array are also used for

primitive PDV.

In PDV Arithmetic, refinement is the key method for

computing arbitrarily tight upper and lower bounds for a

W. Li, J. Mac Hyman / Reliability Engineering and System Safety 85 (2004) 191–209198



bin in the exact generalized probabilistic discretization

of a PDV. As stated in Theorem 3.5, the accuracy of

the approximation to the exact bounds does not depend on

the way how the refinement is chosen, but only depends

on the width of the refinement. Thus, in the implementa-

tion, uniform subdivision is a simple and natural refine-

ment to be used in such a way that a bin divisor (denoted

by BIN_DIVISOR in our PDVFOR77 implementation)

that is a positive number uniformly subdivides each input

bin and the associated probability of the bin to achieve

refined generalized probabilistic discretizations of primi-

tive PDVs. The larger the bin divisor, the better the

approximation. However, if let m be the bin divisor, n be

the total number of primitive PDVs in the program, then

the total number of bins under consideration in the program

would be proportional to mn: Thus the chosen value of bin

divisor is limited by the storage capacity and speed of the

computer.

Back to the PDV recording it is crucial to distinguish by

usage those arrays that store the endpoints of bins and the

associated probabilities. There are four types of these arrays,

two of them for primitive PDV and the other two for derived

PDV. Namely, for each primitive PDV there are three arrays

used for original inputs and three other arrays for the refined

inputs; for each derived PDV there are three arrays used for

the generalized probabilistic discretizations derived from

the refined inputs and three other arrays for the special

generalized probabilistic discretizations derived from

regrouping (described in Definition 3.4).

As we have known, every bin of a derived PDV is

obtained from the bins of the variables in the pre-image

primitive PDV set via interval arithmetic. Thus, the index of

a bin in the generalized probabilistic discretization of a

derived PDV is actually a function of the indices of the bins

of the variables in the pre-image primitive PDV set. To

account for the relationships among PDVs, we need to

establish a portfolio for each derived PDV. This portfolio

includes:

(1) The pre-image primitive PDV set of the derived PDV;

(2) A quantity to reflect the relationship of a bin of the

derived PDV and the corresponding bins of the

variables in its pre-image primitive PDV set. This

quantity is represented by the order (or index) in which

the bins of the derived PDV are arranged.

We construct a primitive index set for each derived PDV.

The primitive index set is a set of tuples out of the pre-image

primitive PDV set of the derived PDV. The number of

dimensions of the tuple is the number of primitive PDVs in

the pre-image primitive PDV set of the derived PDV. Each

dimension of the tuple corresponds to a variable in the pre-

image primitive set, and the value of the dimension index

ranges from 1 to the number of bins of this primitive PDV.

Obviously, the primitive index set of a PDV records all the

indices of the bins of the variables in its pre-image PDV set.

To determine the index of a bin of a derived PDV from its

primitive index set, the following relation (4.1) is used.

Assume that there is an n-D index set

{ði1;…; inÞj1 # ir # mr; 1 # r # n}:

This index set can be mapped to a 1D index set via

ði1;…; inÞ 7!
Xn21

j¼1

ðij 2 1Þ
Yn

r¼jþ1

mr þ in: ð4:1Þ

Mapping (4.1) is a one-to-one mapping. Using Eq. (4.1) to

arrange the order of the bins of the derived PDV implies that

the index of a bin of the derived PDV uniquely corresponds

to some indices of the bins of the variables in the pre-image

primitive PDV set. Therefore, arranging the order of the

bins of a derived PDV in this way completely reflects the

information in the pre-image primitive PDV set.

An illustrative example is given as follows. Consider a

PDV that is a function of two inputs: primitive PDVs 1 and

3. Primitive PDV 1 has 30 bins, and primitive PDV 3 has 40

bins. Then this PDV has 30 £ 40 ¼ 1200 bins. Choose

an arbitrary bin, say, the 1000th bin of this PDV.

Using formula (4.1), we obtain an integer equation:

40ði1 2 1Þ þ i2 ¼ 1000; 1 # i1 # 30; 1 # i2 # 40:

The unique solution to the equation is i1 ¼ 25; i2 ¼ 40:

This means that there is a one-to-one correspondence

between the 1000th bin of this PDV and the pair of the 25th

bin of primitive PDV 1 and the 40th bin of primitive PDV 3.

This relationship is used to calculate the interval and the

probability of the 1000th bin of this PDV as well as to

manipulate the correlations between this bin and the bins of

other PDVs.

Relation (4.1) also provides a formula to compute exact

generalized probabilistic discretization. Recall that in

Refined Primitive PDV Arithmetic, we subdivide each bin

of primitive PDVs to get refined generalized probabilistic

discretization. Each refined bin is given a label, called exact-

label, that points to the original input bin which it comes

from. As a result, each bin of a derived PDV that is derived

from the refinement has an exact-label that is derived from

the exact-labels of the bins of the variables in its pre-image

primitive PDV set. If we assume that n is the cardinality of

the pre-image primitive PDV set (in which the primitive

PDVs are listed in ascending order by their indices) of

a PDV, ir is the exact-label of the refined bin of the primitive

PDV that is located at position r in the pre-image primitive

PDV set ð1 # r # nÞ; and mr is the number of bins of this

primitive PDV at position r before being refined, then the

right hand side of (4.1) defines the exact-label of the derived

bin of the derived PDV. All the bins of the derived PDV

with the same exact-label come from the same bins of the

original PDV inputs (that are not refined) in the pre-image

primitive PDV set. Combining the bins of the derived PDV

that have the same exact-label, we obtain a bin and its

associated probability in the special generalized probabi-

listic discretization that converges to the exact generalized
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probabilistic discretization of the PDV as the bin divisor

tends to 1:

4.2. Preprocessor

The new data type PDV in a computer language needs to

be parsed in order to be compatible with the existing

computer compilers. We use a preprocessor for this task.

The preprocessor can be written in the scripting language

PERL because of the portability of PERL. After the parsing,

a number of files are generated and they, along with the

necessary subroutine library, can be compiled by the

compilers to generate an executable output file.

In the current implementation, PDV data type can be

used only in main program.

The primary functions of the preprocessor are in three

aspects: (1) declarative statements; (2) input PDV data; and

(3) executable statements. Besides, some basic simplifica-

tions are automatically done by default by the preprocessor

to reduce the uncertainties of PDVs, unless the user

explicitly deactivates this feature.

We will now describe the primary functions of the

preprocessor in parsing.

4.2.1. Declarative statements

All PDVs that appear in the source program must be

declared as other existing data types, such as real and

integer. Each PDV can be declared only once. The syntax

for declaring PDVs is as follows.

pdv variable 1;…; variable n

All the PDV variable names are placed in a symbol table

and labeled in the order as they appear. These labels are

stored in a PDV label list that are used as pointers to the

PDVs in the program. The intermediate PDVs generated by

parsing algebraic expressions are also recorded in the PDV

label list at the time they appear. The preprocessor should be

able to reuse these temporary variables in the expressions to

minimize the total number of temporary variables in the list.

4.2.2. Input PDV data

When data are input to a PDV by the user, a new

primitive PDV is enumerated such that the PDV and the

corresponding primitive PDV share the same data.

The syntax for inputting PDV data is as follows. Assume

x is a PDV, then the statements

bin½x	 ¼ ½a1; b1; a2; b2;…; an; bn	

df ½x	 ¼ ½p1; p2;…; pn	

cdf ½x	 ¼ ½q1; q2;…; qn	

define x with n bins ½a1; b1	; ½a2; b2	;…; ½an; bn	; with

probabilities p1; p2;…; pn on each bin, and with cumulative

probabilities q1; q2;…; qn up to each bin, respectively.

ai; bi; pi; qið1 # i # nÞ can be numbers, array elements, or

algebraic expressions of non-PDV variables. When they

are numbers, requirements such as ai # bi; pi $ 0 for

1 # i # n; and 0 # q1 # · · · # qn must be satisfied, other-

wise the preprocessor will print out the error messages.

There is a restriction on the orders of the PDV input

statements. The bin input statement must appear before the

df and cdf input statements for the same input PDV. Besides,

the bin statement can appear by itself without the df and cdf

statements. When there is the bin statement only, the

preprocessor assumes that each bin gets its probability from

the portion of its width out of the total widths of all the bins,

that is, it calculates the corresponding probabilities on the

bins based on the formula

pi ¼
bi 2 aiXn

r¼1

ðbr 2 arÞ

; 1 # i # n:

If there are df or cdf statements for the same PDV name in

the following part of the program, the preprocessor will

update the data in the probability arrays while keeping the

information about the bins unchanged. If a new bin

statement is defined for the same PDV name, all the

previous information about this derived PDV is overridden

and a new primitive PDV is defined.

The cdf statement is fragile in the sense that it requires

the already-existing bin statement to have ascending

endpoints, i.e. a1 # b1 # a2 # b2· · · # an # bn: The pre-

processor parses the cdf statement by calculating the

corresponding probability for each bin using subtraction.

Notice that PDV Arithmetic needs only associated prob-

abilities on the bins in the generalized probabilistic

discretization. Hence cdf statement is designed only for

the user to have the convenience to input cumulative

probabilities in the program.

There is some flexibility for the user when inputting

probabilities. The values in df and cdf statements can be

treated as weights, where the values in df statement need not

sum to 1, and the last value in cdf statement need not be 1.

All values in df and cdf statements are required to be

nonnegative, and the values in cdf statement must be

increasing. The preprocessor can normalize the input

weights automatically.

4.2.3. Executable statements

The executable statements includes assignment state-

ments and the output statements. The PERL preprocessor

parses them into a sequence of calls to the subroutines in the

subroutine library.

4.3. Subroutine library

The subroutine library designed for PDV Arithmetic is

no doubt the most important part of the implementation. It

provides many subroutines to answer the subroutine
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calls resulting from parsing the statements that contain PDV

data type.

Some often-used probability distribution functions can

be stored in the subroutine library. Proper truncations are

needed for infinite interval domain in order to receive finite

probabilistic discretization. For example, the standard

normal distribution function can be stored in the following

way. We truncate the tails (21, 2 5) and (5,1) by losing

probability 0.5·6.981·1027 on each tail. We then divide

interval [25,5] into 1000 bins, and get the cumulative

probability for each breaking point from any mathematical

or statistical handbook (e.g. see Ref. [28]). To make up the

probabilities lost from the truncation, distribution function

values 0 and 1 are assigned to the breaking point 25 and 5,

respectively. Because any normal distribution is derived

from the combination of its mean, its standard derivation,

and the standard normal distribution, a probabilistic

discretization of any normal distribution with 1000 equal-

width bins can be generated from the above stored standard

normal distribution. In practice, the user can use a global

parameter BIN_NUM_NORMAL to control the actual

number of bins of the normal distribution. A subroutine in

the library can generate a probabilistic discretization for

the desired normal distribution from the stored standard

normal distribution with the bin number specified by the

user via this parameter.

5. Examples

As applications of PDV Arithmetic, some examples are

presented. The computations in the examples are pro-

grammed in PDVFOR77, which is an extension of Fortran

77 by adding PDV as a basic data type. The reader can

download PDVFOR77 from http://math.lanl.gov/~liw [30].

Example 5.1. Consider a 2 £ 2 matrix A ¼
� a c

b d

�
, where

the parameters a,b,c,d are PDVs. The parameters can be

linearly dependent, nonlinearly dependent, partially depen-

dent, and independent. The following four cases will

demonstrate the comparisons for the density functions of

the eigenvalues of this matrix between PDV Arithmetic and

Monte Carlo simulation providing the different relation-

ships among a; b; c; d: The eigenvalues of the matrix are the

roots of the following characteristic equation

ðl2 aÞðl2 dÞ2 bc ¼ 0:

(1) a; b; c; d are linearly dependent PDVs, where a ¼

0:5d þ 1:5; c ¼ 2a 2 1; b ¼ 0:5c 2 0:5; d [ ½21; 1	

and d is uniformly distributed. The comparisons are

shown in Fig. 3.

(2) a; b; c; d are nonlinearly dependent PDVs, where a ¼

3d2 þ 1; c ¼ 2a 2 1; b ¼ 0:5c=a þ 0:5; d [ ½21; 1	

and d is uniformly distributed. The comparisons are

shown in Fig. 4.

(3) a; b; c; d are partially dependent PDVs, where a ¼

3d2 þ 1; b ¼ 0:5c=a þ 0:5; c [ ½2; 10	; d [ ½21; 1	; c

and d are uniformly distributed and independent. The

comparisons are shown in Fig. 5.

(4) a; b; c; d are independent PDVs, where a [ ½1; 2	; b [
½0; 1	; c [ ½1; 3	; d [ ½21; 1	; and all are uniformly

distributed. The comparisons are shown in Fig. 6.

The next example is from the challenge problem set

given in Oberkampf et al. [38].

Example 5.2. (Challenge problem set)Let the model of the

physical process is given by

y ¼ ða þ bÞa: ð5:1Þ

Fig. 3. Comparisons for the density functions of the eigenvalues between

PDV Arithmetic (solid line) and Monte Carlo simulation (dot-dashing line)

for case (1) in Example 5.1, where all parameters are linearly dependent.
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The parameters a and b are independent real numbers, i.e.

knowledge about the value of one parameter implies nothing

about the value of the other, and a $ 0; b . 0: The task for

each problem in the sequence is to quantify the uncertainty in

y given the information regarding a and b: In other words,

what can be ascertained about the response of the system y;

given only the stated information about a and b?

The sequence of problems begins with very little

information concerning a and b so that they are only

known to lie within specified intervals. Information of

different types is incrementally added in each subsequent

problem in the sequence by way of more specificity

concerning the parameters. The information given may be

mutually supportive, or some of it may be contradictory to

some degree.

Six problems are specified in the sequence as follows.

† Problem 1: a and b are in an interval, respectively.

† Problem 2: a is in an interval, b is characterized by

multiple intervals.

† Problem 3: a and b are characterized by multiple

intervals, respectively.

† Problem 4: a is in an interval, b is specified by a

probability distribution with imprecise parameters.

† Problem 5: a is characterized by multiple intervals, b is

specified by a probability distribution with imprecise

parameters.

† Problem 6: a is in an interval, b is specified by a precise

probability distribution.

The solutions to Problems 1–3 can be obtained analyti-

cally by finding the global maximal and minimal values for

function (5.1) over some interval domains. However, the rest

of the problems requires the consideration of precise or

imprecise probability distributions. In this example, we

consider using upper and lower p-bounds is an appropriate

way to quantify the uncertainties in the above problem set.

PDV Arithmetic provides such a computational approach.

Fig. 4. Comparisons for the density functions of the eigenvalues between

PDV Arithmetic (solid line) and Monte Carlo simulation (dot-dashing line)

for case (2) in Example 5.1, where all parameters are nonlinearly

dependent.

Fig. 5. Comparisons for the density functions of the eigenvalues between

PDV Arithmetic (solid line) and Monte Carlo simulation (dot-dashing line)

for case (3) in Example 5.1, where all parameters are partially dependent.
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Along with the description of each problem in the

sequence is an illustration in which we input numerical

values for the parameters in the problem set. Accordingly,

parameters a and b are predicted in some independent

intervals with equal probabilities. We then obtain general-

ized probabilistic discretizations for each of them. We plot

the p-box that approximates the exact p-box of output y with

respect to each of these input generalized probabilistic

discretizations for a and b: To make a contrast, we plot the

refined p-box of y with respect to the refined probabilistic

discretizations of a and b that are obtained by evenly

dividing each input bin using a sufficiently large bin divisor.

The refined p-box gives the shape and range of the limiting

probability distribution function that is determined by

additional assumption that each parameter is evenly

distributed on each input bin.

Problem 1. a and b are contained in closed intervals A ¼

½a1; a2	 and B ¼ ½b1; b2	; respectively.

Illustration 5.2.1. Numerical values for parameters in

Problem 1 are:

A ¼ ½0:1; 1:0	; B ¼ ½0:0; 1:0	:

We choose BIN_DIVISOR ¼ 400. The p-box and refined

p-box are plotted in Fig. 7. Note that the analytic solution to

the range interval of y is ½ðe21Þe
21

; 2:0	 < ½0:6922; 2:0	:

Problem 2. a is contained in closed interval A ¼ ½a1; a2	;

and b is given by n independent and equally credible closed

intervals Bj ¼ ½b
j
1; b

j
2	; where j ¼ 1;…; n: Given this

information, consider the following family of problems.

(2a) Bj is a consonant collection of intervals (i.e. nested

intervals). Without loss of generality, we assume Bj , Bjþ1;

for j ¼ 1;…; n 2 1:

(2b) Bj is a consistent collections of intervals (i.e. having

non-empty overall intersection). Without loss of generality,

we assume
Tn

j¼1 Bj – f:

Fig. 6. Comparisons for the density functions of the eigenvalues between

PDV Arithmetic (solid line) and Monte Carlo simulation (dot-dashing line)

for case (4) in Example 5.1, where all parameters are independent.

Fig. 7. The p-box and refined p-box for y ¼ ða þ bÞa; where a belongs to

[0.1,1.0], and b belongs to [0.0,1.0]. We choose BIN_DIVISOR ¼ 400.

Fig. 8. The p-box and refined p-box for y ¼ ða þ bÞa; where a belongs to

[0.1,1.0], and b belongs to four independent nested intervals [0.6,0.8],

[0.4,0.85], [0.2,0.9], and [0.0,1.0]. We choose BIN_DIVISOR ¼ 200.
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(2c) Bj is an arbitrary collection of intervals.

Illustration 5.2.2a. Numerical values for parameters in

Problem 2a are

n ¼ 4;

A ¼ ½0:1; 1:0	;

B1 ¼ ½0:6; 0:8	; B2 ¼ ½0:4; 0:85	;

B3 ¼ ½0:2; 0:9	; B4 ¼ ½0:0; 1:0	:

We choose BIN_DIVISOR ¼ 200. By the assumption that

each source of information concerning b is equally credible,

we assign equal probability 0.25 to each input bin of b in the

source program. The p-box and refined p-box are plotted in

Fig. 8.

Illustration 5.2.2b. Numerical values for parameters in

Problem 2b are:

n ¼ 4;

A ¼ ½0:1; 1:0	;

B1 ¼ ½0:6; 0:9	; B2 ¼ ½0:4; 0:8	;

B3 ¼ ½0:1; 0:7	; B4 ¼ ½0:0; 1:0	:

We choose BIN_DIVISOR ¼ 200. By the assumption that

each source of information concerning b is equally credible,

we assign equal probability 0.25 to each input bin of b in the

source program. The p-box and refined p-box are plotted in

Fig. 9.

Illustration 5.2.2c. Numerical values for parameters in

Problem 2c are:

n ¼ 4;

A ¼ ½0:1; 1:0	;

B1 ¼ ½0:6; 0:8	; B2 ¼ ½0:5; 0:7	;

B3 ¼ ½0:1; 0:4	; B4 ¼ ½0:0; 1:0	:

We choose BIN_DIVISOR ¼ 200. By the assumption that

each source of information concerning b is equally credible,

we assign equal probability 0.25 to each input bin of b in the

source program. The p-box and refined p-box are plotted in

Fig. 10.

Problem 3. a is given by m independent and equally

credible intervals Ai ¼ ½ai
1; a

i
2	; where i ¼ 1;…m; and b is

Fig. 9. The p-box and refined p-box for y ¼ ða þ bÞa; where a belongs to

[0.1,1.0], and b belongs to four independent consistent intervals [0.6,0.9],

[0.4,0.8], [0.1,0.7], and [0.0,1.0]. We choose BIN_DIVISOR ¼ 200.

Fig. 10. The p-box and refined p-box for y ¼ ða þ bÞa, where a belongs to

[0.1,1.0], and b belongs to four independent intervals [0.6,0.8], [0.5,0.7],

[0.1,0.4], and [0.0,1.0]. We choose BIN_DIVISOR ¼ 200.

Fig. 11. The p-box and refined p-box for y ¼ ða þ bÞa; where a belongs to

three independent nested intervals [0.5,0.7], [0.3,0.8], [0.1,1.0], and b

belongs to four independent nested intervals [0.6,0.6], [0.4,0.85], [0.2,0.9],

[0.0,1.0]. We choose BIN_DIVISOR ¼ 120.
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given by n independent and equally credible closed intervals

Bj ¼ ½b
j
1; b

j
2	; where j ¼ 1;…; n:

Given this information, consider the following family of

problems.

(3a) Ai and Bj are consonant collections of intervals (i.e.

nested intervals). Without loss of generality, we assume

Ai , Aiþ1; i ¼ 1;…;m 2 1; and Bj , Bjþ1; for j ¼

1;…; n 2 1:

(3b) Ai and Bj are consistent collections of intervals (i.e.

having non-empty overall intersection). Without loss of

generality, we assume
Tm

i¼1 Ai – f; and
Tn

j¼1 Bj – f:

(3c) Ai and Bj are arbitrary collections of intervals.

Illustration 5.2.3a. : Numerical values for parameters in

Problem 3a are:

m ¼ 3; n ¼ 4;

A1 ¼ ½0:5; 0:7	; A2 ¼ ½0:3; 0:8	;

A3 ¼ ½0:1; 1:0	;

B1 ¼ ½0:6; 0:6	; B2 ¼ ½0:4; 0:85	;

B3 ¼ ½0:2; 0:9	; B4 ¼ ½0:0; 1:0	:

We choose BIN_DIVISOR ¼ 120. By the assumption that

each source of information concerning a and b is equally

credible, respectively, we assign equal probability 1/3 to

each input bin of a; and equal probability 0.25 to each input

bin of b in the source program. The p-box and refined p-box

are plotted in Fig. 11.

Illustration 5.2.3b. Numerical values for parameters in

Problem 3b are:

m ¼ 3; n ¼ 4;

A1 ¼ ½0:5; 1:0	; A2 ¼ ½0:2; 0:7	;

A3 ¼ ½0:1; 0:6	;

B1 ¼ ½0:6; 0:6	; B2 ¼ ½0:4; 0:8	;

B3 ¼ ½0:1; 0:7	; B4 ¼ ½0:0; 1:0	:

We choose BIN_DIVISOR ¼ 120. By the assumption that

each source of information concerning a and b is equally

credible, respectively, we assign equal probability 1/3 to

each input bin of a; and equal probability 1/4 to each input

bin of b in the source program. The p-box and refined p-box

are plotted in Fig. 12.

Fig. 12. The p-box and refined p-box for y ¼ ða þ bÞa, where a belongs to

three independent consistent intervals [0.5,1.0], [0.2,0.7], [0.1,0.6], and b

belongs to four independent consistent intervals [0.6,0.6], [0.4,0.8],

[0.1,0.7], [0.0,1.0]. We choose BIN_DIVISOR ¼ 120.

Fig. 13. The p-box and refined p-box for y ¼ ða þ bÞa, where a belongs to

three independent intervals [0.8,1.0], [0.5,0.7], [0.1,0.4], and b belongs to

four independent intervals [0.8,1.0], [0.5,0.7], [0.1,0.4], [0.0,0.2]. We

choose BIN_DIVISOR ¼ 120.

Fig. 14. The p-box and refined p-box for y ¼ ða þ bÞa, where a belongs to

[0.1,1.0], and ln b follows a normal distribution Nðm;sÞ in which m belongs

to [0.0,1.0] and s belongs to [0.1,0.5]. We choose BIN_DIVISOR ¼ 20,

BIN_NUM_NORMAL ¼ 20.
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Illustration 5.2.3c. Numerical values for parameters in

Problem 3c are:

m ¼ 3; n ¼ 4;

A1 ¼ ½0:8; 1:0	; A2 ¼ ½0:5; 0:7	;

A3 ¼ ½0:1; 0:4	;

B1 ¼ ½0:8; 1:0	; B2 ¼ ½0:5; 0:7	;

B3 ¼ ½0:1; 0:4	; B4 ¼ ½0:0; 0:2	:

We choose BIN_DIVISOR ¼ 120. By the assumption that

each source of information concerning a and b is equally

credible, respectively, we assign equal probability 1/3 to

each input bin of a; and equal probability 0.25 to each input

bin of b in the source program. The p-box and refined p-box

are plotted in Fig. 13.

Problem 4. a is contained in the closed interval A; and b is

given by a log-normal probability distribution. One has

A ¼ ½a1; a2	; and ln b , Nðm;sÞ

The value of the mean, m; and the standard deviation, s; are

given, respectively, by the closed intervals

M ¼ ½m1;m2	 and S ¼ ½s1;s2	:

Illustration 5.2.4. Numerical values for parameters in

Problem 4 are:

A ¼ ½0:1; 1:0	;

M ¼ ½0:0; 1:0	; S ¼ ½0:1; 0:5	:

We choose BIN_DIVISOR ¼ 20. We also choose

BIN_NUM_STD_NORMAL ¼ 20, i.e. the number of

bins for the standard normal distribution in the range

[25,5] is 20. The p-box and refined p-box are plotted in

Fig. 14.

Problem 5. The information concerning a is given by m

independent sources of information. Each source specifies a

closed interval Ai that contains the values for a: The

information concerning b is given by n independent sources

of information. Each source specifies b is given by a log-

normal probability distribution, where the mean and

standard deviation assume values in closed intervals, Mj

and Sj; respectively. One has

Ai ¼ ½ai
1; a

i
2	;

ln b , Nðmj
;sjÞ;

mj [ Mj ¼ ½m
j
1;m

j
2	; s

j [ S ¼ ½s
j
1;s

j
2	;

i ¼ 1; 2;…;m; j ¼ 1; 2;…; n:

The m sources of information for a are equally

credible. So are the n sources for m and s: Thus we

may consider accepting each source of information with

equal probability for each parameter a;m and s;

respectively. Given this information, consider the follow-

ing family of problems:

(5a) Ai;Mj; Sj are consonant collections of intervals

(i.e. nested intervals), respectively. That is, Ai , Aiþ1;

for i ¼ 1;…;m 2 1;Mj , Mjþ1; Sj , Sjþ1; for j ¼

1;…; n 2 1:

(5b) Ai;Mj; Sj are consistent collections of intervals (i.e.

having non-empty overall intersection), respectively. That

is,
Tm

i¼1 Ai – f;
Tn

j¼1 Mj – f;
Tn

j¼1 Sj – f:

(5c) Ai;Mj; Sj are arbitrary collections of intervals.

Fig. 15. The p-box and refined p-box for y ¼ ða þ bÞa; where a belongs to

three independent nested intervals [0.5,0.7], [0.3,0.8], [0.1,1.0], and ln b

follows a normal distribution Nðm;sÞ where m belongs to three independent

nested intervals [0.6,0.8], [0.2,0.9], [0.0,1.0], and s belongs to three

independent nested intervals [0.3,0.4], [0.2,0.45], [0.1,0.5]. We choose

BIN_DIVISOR ¼ 8, BIN_NUM_NORMAL ¼ 20.

Fig. 16. The p-box and refined p-box for y ¼ ða þ bÞa, where a belongs to

three independent consistent intervals [0.5,1.0], [0.2,0.7], [0.1,0.6], and ln b

follows Nðm;sÞ where m belongs to three independent consistent intervals

[0.6,0.9], [0.1,0.7], [0.0,1.0], and s belongs to three independent consistent

intervals [0.3,0.45], [0.15,0.35], [0.1,0.5]. We choose BIN_DIVISOR ¼ 8,

BIN_NUM_NORMAL ¼ 20.
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Illustration 5.2.5a. Numerical values for parameters in

Problem 5a are:

m ¼ 3; n ¼ 3;

A1 ¼ ½0:5; 0:7	; A2 ¼ ½0:3; 0:8	;

A3 ¼ ½0:1; 1:0	;

M1 ¼ ½0:6; 0:8	; M2 ¼ ½0:2; 0:9	;

M3 ¼ ½0:0; 1:0	;

S1 ¼ ½0:3; 0:4	; S2 ¼ ½0:2; 0:45	;

S3 ¼ ½0:1; 0:5	:

We choose BIN_DIVISOR ¼ 8, and BIN_NUM_

NORMAL ¼ 20. By the assumption that each source of

information concerning a;m and s is equally credible,

respectively, we assign equal probability 1/3 to each input

bin of a;m and s in the source program. The p-box and

refined p-box are plotted in Fig. 15.

Illustration 5.2.5b. Numerical values for parameters in

Problem 5b are:

m ¼ 3; n ¼ 3;

A1 ¼ ½0:5; 1:0	; A2 ¼ ½0:2; 0:7	;

A3 ¼ ½0:1; 0:6	;

M1 ¼ ½0:6; 0:9	; M2 ¼ ½0:1; 0:7	;

M3 ¼ ½0:0; 1:0	;

S1 ¼ ½0:3; 0:45	; S2 ¼ ½0:15; 0:35	;

S3 ¼ ½0:1; 0:5	:

We choose BIN_DIVISOR ¼ 8, and BIN_NUM_

NORMAL ¼ 20. By the assumption that each source of

information concerning a;m and s is equally credible,

respectively, we assign equal probability 1/3 to each input

bin of a;m and s in the source program. The p-box and

refined p-box are plotted in Fig. 16.

Illustration 5.2.5c. Numerical values for parameters in

Problem 5c are:

m ¼ 3; n ¼ 3;

A1 ¼ ½0:8; 1:0	; A2 ¼ ½0:5; 0:7	;

A3 ¼ ½0:1; 0:4	;

M1 ¼ ½0:6; 0:8	; M2 ¼ ½0:1; 0:4	;

M3 ¼ ½0:0; 1:0	;

S1 ¼ ½0:4; 0:5	; S2 ¼ ½0:25; 0:35	;

S3 ¼ ½0:1; 0:2	:

We choose BIN_DIVISOR ¼ 8, and BIN_NUM_

NORMAL ¼ 20. By the assumption that each source of

information concerning a;m and s is equally credible,

respectively, we assign equal probability 1/3 to each input

bin of a;m and s in the source program. The p-box and

refined p-box are plotted in Fig. 17.

Problem 6. a is contained in closed interval A; and b is

given by a lognormal probability distribution. That is,

A ¼ ½a1; a2	 and lnb , Nðm;sÞ:

The values of m and s are precisely known.

Fig. 17. The p-box and refined p-box for y ¼ ða þ bÞa; where a belongs to

three independent intervals [0.8,1.0], [0.5,0.7], [0.1,0.4], and ln b follows

Nðm;sÞ where m belongs to three independent intervals [0.6,0.8], [0.1,0.4],

[0.0,1.0], and s belongs to three independent intervals [0.4,0.5],

[0.25,0.35], [0.1,0.2]. We choose BIN_DIVISOR ¼ 8, BIN_NUM_

NORMAL ¼ 20.

Fig. 18. The p-box and refined p-box for y ¼ ða þ bÞa, where a belongs to

[0.1,1.0], and ln b follows the normal distribution N(0.5,0.5). We choose

BIN_DIVISOR ¼ 200, BIN_NUM_NORMAL ¼ 250.
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Illustration 5.2.6. Numerical values for parameters in

Problem 6 are:

A ¼ ½0:1; 1:0	; m ¼ 0:5; s ¼ 0:5:

We choose BIN_DIVISOR ¼ 200, and BIN_NUM_

NORMAL ¼ 250. The p-box and refined p-box are plotted

in Fig. 18.

Figs. 7–18 are very suggestive. Problems 1–3 are

arranged in a monotone increasing order in information

about parameters a and b; that is, more and more

information for parameters a and b are obtained. It is true

that the more information, the more specific the generalized

probabilistic discretization, thus the p-boxes are in a nested

order, i.e. the latter p-box is contained in the former one.

The figures illustrate how the p-boxes are in nested order.

Problems 4 and 5, Problems 4 and 6 are arranged in

monotone increasing order in information, respectively. The

figures illustrating each of these two pairs of problems also

show that the corresponding p-boxes are in nested order.

The informations about parameter b are in monotone

increasing order in Problems 5 and 6, while the information

about parameter a are in monotone decreasing order, thus

the p-box in Problem 6 and the ones in Problem 5 do not

have nested relationship.

In the three cases (i.e. consonant collection, consistent

collection, and arbitrary collection) of Problems 2, 3, and

5, the figures seem to suggest some nested relationships.

However the p-boxes are plotted based on the chosen

intervals for a and b that present some ‘narrower-and-

narrower’ pattern in these cases. In general, p-boxes do

not have nested relationship if we do not have refined

information for the parameters. In fact, if we use the area

of p-box to measure uncertainty, then it can be shown (see

Ref. [31]) that the area of p-box is invariant with respect

to the lengths of the bins and the associated probabilities

in the generalized probabilistic discretization, i.e. given

that the lengths and the associated probabilities of the bins

are fixed, the area of the p-box is constant. Therefore,

none of these three cases (consonant collection, consistent

collection and arbitrary collection) provides more infor-

mation about the underlying probability distributions than

the others.

6. Conclusion

All simulations are approximate by nature, due to

complex and inherent uncertainties in the data or the

computer model being used. The uncertainty can grow or

shrink during a calculation in unexpected ways. One way

to quantify the uncertainty in computer simulations is to

directly represent the unknowns as generalized probabil-

istic discretizations of PDVs and define computer

arithmetic rules to accurately track the evolution of the

PDVs during a calculation. The computer arithmetic

should also be able to dynamically calculate the

correlations among PDVs.

Based on rigorous mathematical reasoning, we have

developed PDV Arithmetic that is characterized by its

complete dependency tracking feature. Unlike other exist-

ing approaches, PDV Arithmetic provides convergent

enclosing bounds to the solutions. In other words, PDV

Arithmetic does not lose any possible solution and when

the refinement is taken as infinitesimally small, PDV

Arithmetic can get exactly all the possible solutions.

We implemented PDV Arithmetic by extending Fortran

77 to PDVFOR77 where PDVs are declared in the same

manner as real variables are declared in Fortran 77.

Associated with each PDV is a generalized probabilistic

discretization. A PERL program parses a PDVFOR77

program to generate a standard Fortran 77 program where

the PDV Arithmetic operations are performed by subroutine

calls.

We demonstrated the effectiveness of the approach

by comparing PDV Arithmetic directly with Monte

Carlo simulations. The examples verified that a

single deterministic PDV computation could accurately

capture the probability distribution generated by up to

many many thousands of Monte Carlo stochastic

simulations.

The highlight part of PDV Arithmetic that is superior to

Monte Carlo methods is its strong ability in handling

imprecise probabilities. Monte Carlo methods require the

prior knowledge about the probability distribution of a PDV.

That means if a PDV is characterized by one of its

generalized probabilistic discretizations only, Monte Carlo

methods must add additional assumptions on the PDV in

order to get a particular probability distribution to run the

simulations. The results obtained in this way usually do not

reflect the correct solutions. Our PDV Arithmetic can

calculate the correct probability distribution bounds that

enclose all the possible solutions and, more importantly, the

bounds are sharp when the refinements are chosen

sufficiently small.

PDV Arithmetic reduces to interval arithmetic when only

the range intervals of PDVs are considered. The PDV

Arithmetic dependency tracking feature provides a frame-

work to give much tighter interval bounds than the classic

interval approaches that do not track the correlations

between the computational variables.

Because we cannot eliminate uncertainty in computer

simulations, it is essential to learn far more than we now

understand about uncertainty assessment and management.

This knowledge is critical to our continued and expanding

use of computation. As computers become ever-more-

powerful tools to simulate both natural and artificial

phenomena, the potential benefits of understanding uncer-

tainty increase. PDV Arithmetic offers a new tool to assess

how each source of uncertainty propagates through

computations and interacts with other sources of

uncertainty.
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